Enoncé
Sans calculatrice, donner la valeur exacte des nombres suivants :
Sans calculatrice, donner la valeur exacte des nombres suivants :
\begin{array}{ll}
\mathbf{1.}\ A = \sqrt {1000000}&\quad\mathbf{2.}\ B = \dfrac{{\sqrt 9 + \sqrt {121} }}{{\sqrt {49} }}\\
\mathbf{3.}\ C = \sqrt {\dfrac{{50}}{{98}}}&\quad\mathbf{4.}\ D = \sqrt {31 + \sqrt {21 + \sqrt {9 + \sqrt {49} } } }\\
\end{array}
Enoncé
Simplifier et calculer :
\begin{array}{ll}
\mathbf{1.}\ A = \sqrt {50} &\quad\mathbf{2.}\ B = \sqrt {363}\\
\mathbf{3.}\ C = 5\sqrt {27} &\quad\mathbf{4.}\ D = \sqrt {24} + 7\sqrt 6 + 2\sqrt {54}\\
\mathbf{5.}\ E = \sqrt 3 \times \sqrt {21} \times \sqrt 7 &\quad\mathbf{6.}\ F = \sqrt {{5^3} \times {7^5} \times 1000}\\
\mathbf{7.}\ G = \sqrt {242} \times \sqrt {128} &\quad\mathbf{8.}\ H = \sqrt 7 \left[ {\sqrt {700} + {{\left( {\sqrt 7 } \right)}^3}} \right]\\
\mathbf{9.}\ I = \left( {\sqrt {13} – 5} \right)\left( {\sqrt {13} + 5} \right) &\quad\mathbf{10.}\ J = {\left( {\sqrt 5 + 2} \right)^2} \\
\mathbf{11.}\ K = {\left( {\sqrt 3 – 1} \right)^4} &\quad\mathbf{12.}\ L = \left( {\sqrt 3 + 5} \right)\left( {2\sqrt 3 + 1} \right)\\
\mathbf{13.}\ M = \sqrt {{{\left( {\sqrt 7 – 3} \right)}^2}} &\quad\mathbf{14.}\ N = \sqrt {{{\left( {\sqrt 5 – 1} \right)}^2}} + \sqrt {{{\left( {\sqrt 5 – 7} \right)}^2}}\ \\
\mathbf{15.}\ O = \sqrt {3 + 2\sqrt 2 } &\quad\mathbf{16.}\ P = \sqrt {8 – 2\sqrt {12} }\\
\end{array}
Simplifier et calculer :
\begin{array}{ll}
\mathbf{1.}\ A = \sqrt {50} &\quad\mathbf{2.}\ B = \sqrt {363}\\
\mathbf{3.}\ C = 5\sqrt {27} &\quad\mathbf{4.}\ D = \sqrt {24} + 7\sqrt 6 + 2\sqrt {54}\\
\mathbf{5.}\ E = \sqrt 3 \times \sqrt {21} \times \sqrt 7 &\quad\mathbf{6.}\ F = \sqrt {{5^3} \times {7^5} \times 1000}\\
\mathbf{7.}\ G = \sqrt {242} \times \sqrt {128} &\quad\mathbf{8.}\ H = \sqrt 7 \left[ {\sqrt {700} + {{\left( {\sqrt 7 } \right)}^3}} \right]\\
\mathbf{9.}\ I = \left( {\sqrt {13} – 5} \right)\left( {\sqrt {13} + 5} \right) &\quad\mathbf{10.}\ J = {\left( {\sqrt 5 + 2} \right)^2} \\
\mathbf{11.}\ K = {\left( {\sqrt 3 – 1} \right)^4} &\quad\mathbf{12.}\ L = \left( {\sqrt 3 + 5} \right)\left( {2\sqrt 3 + 1} \right)\\
\mathbf{13.}\ M = \sqrt {{{\left( {\sqrt 7 – 3} \right)}^2}} &\quad\mathbf{14.}\ N = \sqrt {{{\left( {\sqrt 5 – 1} \right)}^2}} + \sqrt {{{\left( {\sqrt 5 – 7} \right)}^2}}\ \\
\mathbf{15.}\ O = \sqrt {3 + 2\sqrt 2 } &\quad\mathbf{16.}\ P = \sqrt {8 – 2\sqrt {12} }\\
\end{array}
Enoncé
Écrire sans « $\sqrt{~~}$ » au dénominateur.
Écrire sans « $\sqrt{~~}$ » au dénominateur.
\begin{array}{ll}
\mathbf{1.}\ A = \dfrac{3}{{\sqrt 2 – 1}} &\quad\mathbf{2.}\ B = \dfrac{{\sqrt 5 – 3}}{{\sqrt 5 }}\\
\mathbf{3.}\ C = \dfrac{5}{{\sqrt 7 – 2}} – \dfrac{2}{{\sqrt 7 }} &\quad\mathbf{4.}\ D = \dfrac{{3 + \sqrt 5 }}{{7 + \sqrt 5 }} – \dfrac{{3 – \sqrt 5 }}{{7 – \sqrt 5 }}\\
\mathbf{5.}\ E = \dfrac{{\sqrt 2 + \sqrt 3 }}{{\sqrt 5 – \sqrt 7 }} &\quad\mathbf{6.}\ F = \dfrac{1}{{1 + \sqrt 2 + \sqrt 3 }}\\
\end{array}