ⓘ
Devoir Surveillé n°3 de Mathématiques
Niveau : 2ème bac sciences mathématiques
Durée : 2 heures
Durée : 2 heures
Enoncé
Partie I
Déterminer l’ensemble de définition de la fonction : $(1.5pts)$ \[\varphi (x) = \int_1^{{x^2}} {\frac{{dt}}{{\ln t}}} \]
Partie II
On considère la fonction ${F}$ définie sur $[0, +\infty[$ par :
\[\left\{ \begin{array}{l}
F(x) = \displaystyle\int_1^{{x^2}} {\frac{{dt}}{{\ln t}}} ,\quad x \in ]0,1[ \cup ]1, + \infty [\\
F(0) = 0\,\,\, , \,\,\,F(1) = \ln 2
\end{array} \right.\]
Partie I
Déterminer l’ensemble de définition de la fonction : $(1.5pts)$ \[\varphi (x) = \int_1^{{x^2}} {\frac{{dt}}{{\ln t}}} \]
Partie II
On considère la fonction ${F}$ définie sur $[0, +\infty[$ par :
\[\left\{ \begin{array}{l}
F(x) = \displaystyle\int_1^{{x^2}} {\frac{{dt}}{{\ln t}}} ,\quad x \in ]0,1[ \cup ]1, + \infty [\\
F(0) = 0\,\,\, , \,\,\,F(1) = \ln 2
\end{array} \right.\]
-
- Montrer que $F$ est dérivable sur $]1,+\infty[$ et que $ F'(x) = \dfrac{x-1}{x \ln x}.$ (1pt)
- Montrer que $F$ est dérivable sur $]0,1[$ et calculer $F'(x)$. (1pt)
- En déduire les variations de la fonction $f$ sur chacun des intervalles $]1,+\infty$ et $]0,1[$. (1pt)
-
- Montrer que $ (\forall x > 1) \,: \,\,\, F(x) \geq \dfrac{x^2 -x}{2 \ln x}$. (1pt)
- Calculer la limite $\displaystyle\lim_{x \to +\infty} F(x)$ et en déduire la nature de la branche infinie au voisinage de $+\infty$. (1pt)
-
- Montrer que : $(1pt)$ \[\left( {\forall x \in \left] {0,1} \right[} \right)\,\,:\,\,\,\,\,\,\,\frac{{x\left( {x – 1} \right)}}{{2\ln x}} \le F(x) \le \frac{{x\left( {x – 1} \right)}}{{\ln x}}\]
- Montrer que la fonction $F$ est continue à droite en $0$. (0.5pt)
- Montrez que la fonction $F$ est dérivable à droite en $0$ et interpréter le résultat obtenu. (0.75pt)
-
- Montrer que : (0.75pt) $$ \left(\forall x \in \left]0,1\right[ \cup \left]1,+\infty\right[\right) \,:\,\,\, \int_x^{x^2} \dfrac{dt}{t\ln t} = \ln 2$$
- Montrer que : $(1pt)$ $$ (\forall x > 1) \,:\,\, x \ln 2 \leq F(x) \leq x^2 \ln 2 $$
- Trouver un encadrement similaire sur l’intervalle $]0,1[$. (0.5pt)
- En déduire que la fonction $F$ est continue en $1$. (0.75pt)
-
- Montrer que : (0.75pt)\[\left( {\forall x > 1} \right)\left( {\exists {c_x} \in \left] {1,x} \right[} \right):\,\,\,\,\,\,F’\left( x \right) = \frac{{F\left( x \right) – F\left( 1 \right)}}{{x – 1}} = F’\left( {{c_x}} \right)\]
- Montrer que $F$ est dérivable en $1$ et que $F'(1) = 1$. (0.75pt)
-
- Dressez le tableau de variations de la fonction $F$. (0.5pt)
- Tracer $(C_F)$ la courbe représentative de $F.$ (0.5pt)
Partie III:
On considère la suite $(v_n)_{n \in \mathbb{N^*}}$ définie par : $$ v_n = \int_{e^n}^{e^{n+1}} \frac{dt}{\ln t} $$
- Montrer en utilisant un changement de variable que : (0.75pt) \[\left( {\forall n \in \mathbb{N}^*} \right),\quad {v_n} = \int_n^{n + 1} {\frac{{{e^t}}}{t}} dt\]
- On considère la fonction $f$ définie sur $]1, +\infty[$ par : $f(x) = \dfrac{e^x}{x}$.
- Montrer que $f$ est strictement croissante sur $]1, +\infty[$. (0.5pt)
- Montrer que : (0.75pt) \[\left( {\forall n \in\mathbb{N}^*} \right),\quad \frac{{{e^n}}}{n} \le \int_n^{n + 1} f (t)dt \le \frac{{{e^{n + 1}}}}{{n + 1}}\]
- Montrer que l’équation $\dfrac{e^x}{x}=\displaystyle\int_n^{n+1}f(t)dt$ admet une solution unique dans l’intervalle $[n,n+1]$. (0.75pt)
- Montrer que $\displaystyle\lim_{n \to +\infty} \frac{u_n}{n} = 1.$ (0.5pt)
-
- Montrer que $(\forall n\in\mathbb{N}^*)$: (0.75pt) $$ 0 \leq \int_n^{n+1} \frac{e^t}{t^2} dt \leq \frac{1}{n} \int_n^{n+1} \frac{e^t}{t} dt $$
- En déduire que : (0.5pt)\[\displaystyle\mathop {\lim }\limits_{n \to + \infty } \frac{{\displaystyle\int_n^{n + 1} {\frac{{{e^t}}}{{{t^2}}}dt} }}{{\displaystyle\int_n^{n + 1} {\frac{{{e^t}}}{t}dt} }} = 0\]
- Montrer en utilisant une intégration par parties que : (0.75pt) \[\left( {\forall n \in {\mathbb{N}^*}} \right),\quad \int_n^{n + 1} {\frac{{{e^t}}}{t}} dt = \frac{{{e^n}}}{n}\left( {\frac{{ne}}{{n + 1}} – 1} \right) + \int_n^{n + 1} {\frac{{{e^t}}}{{{t^2}}}} dt\]
- En déduire que : (0.75pt) $$ \lim (u_n-n) = \ln(e-1)$$