Enoncé
Déterminer en extension les ensembles suivants :
\[\begin{aligned}
\textbf{1.}\,\,\,A &=\left\{{x \in\mathbb{Z} /\,\,\,\frac{{{x^2} -x + 2}}{{2x + 1}} \in\mathbb{Z} } \right\}\\
\textbf{2.}\,\,\,B &=\left\{ (x,y)\in\mathbb{Z}^2 /\,\,\, x^2+xy-2y^2=-5\right\}\\
\textbf{3.}\,\,\,C &=\left\{ x\in\mathbb{Z} /\,\,\, \left| {\frac{{\left| {3x} \right| -4}}{2}} \right| < 1 \right\}
\end{aligned}\]
Corrigé
$\textbf{1.}\,\,\,$Si $x\in A$, on a alors : \[\begin{aligned}
\frac{{{x^2}-x + 2}}{{2x + 1}} \in \mathbb{Z}&\Rightarrow \frac{{4\left( {{x^2}-x + 2} \right)}}{{2x + 1}} \in \mathbb{Z}\\
&\Leftrightarrow \frac{{4{x^2}-4x + 8}}{{2x + 1}} \in \mathbb{Z}\\
&\Leftrightarrow \frac{{\left( {2x + 1} \right)\left( {2x -3} \right) + 11}}{{2x + 1}} \in \mathbb{Z}\\
&\Leftrightarrow \left( {2x-3} \right) + \frac{{11}}{{2x + 1}} \in \mathbb{Z}\\
&\Leftrightarrow \frac{{11}}{{2x + 1}} \in \mathbb{Z}\,\,\,\,\,\text{ car }\,\,\,\left( {2x – 3} \right) \in \mathbb{Z}\\
&\Leftrightarrow 11\,\,\text{ est divisible par }\,\,2x + 1\\
&\Leftrightarrow 2x + 1\in\{-11,-1,1,11\}\\
&\Leftrightarrow x\in\{-6,-1,0,5\}
\end{aligned}\]Vérification :
\[\begin{aligned}
&\bullet\,\, x=-6\Rightarrow \frac{{{{\left( {-6} \right)}^2}- \left( {-6} \right) + 2}}{{2 \times \left( { -6} \right) + 1}} = \frac{{36 + 6 + 2}}{{-12 + 1}} = \frac{{44}}{{ – 11}} =-4 \in Z \Rightarrow -6 \in A\\
&\bullet\,\, x=-1\Rightarrow\frac{{{{\left( {-1} \right)}^2}- \left( {-1} \right) + 2}}{{2 \times \left( { – 1} \right) + 1}} = \frac{{1 + 1 + 2}}{{-2 + 1}} = \frac{4}{{ -1}} = -4 \in Z \Rightarrow -1 \in A\\
&\bullet\,\, x=0\Rightarrow\frac{{{0^2}- 0 + 2}}{{2 \times 0 + 1}} = \frac{2}{1} = 2 \in Z \Rightarrow 0 \in A\\
&\bullet\,\, x=5\Rightarrow\frac{{{5^2}- 5 + 2}}{{2 \times 5 + 1}} = \frac{{25- 5 + 2}}{{10 + 1}} = \frac{{22}}{{11}} = 2 \in Z \Rightarrow 5 \in A
\end{aligned}\]Finalement : $$A=\{-6,-1,0,5\}$$ $\textbf{2.}\,\,\,$Si $(x,y)\in B$, alors $(x,y)\in \mathbb{Z}^2$, tel que : ${x^2} + xy-2{y^2} = -5$, alors : \[\begin{aligned}
\Leftrightarrow &\left( {x -y} \right)\left( {x + y} \right) + y\left( {x-y} \right) = -5\\
\Leftrightarrow & \left( {x -y} \right)\left( {x + 2y} \right) = -5\\
\Leftrightarrow &\left\{ \begin{array}{l}
x -y = 1\\
x + 2y = -5
\end{array} \right.\,\,ou\,\,\left\{ \begin{array}{l}
x -y = -1\\
x + 2y = 5
\end{array} \right.\,\,ou\,\,\left\{ \begin{array}{l}
x -y = 5\\
x + 2y = -1
\end{array} \right.\,\,ou\,\,\left\{ \begin{array}{l}
x -y = -5\\
x + 2y = 1
\end{array} \right.\\
\Leftrightarrow &\left\{ \begin{array}{l}
x = 1 + y\\
3y = -6
\end{array} \right.\,\,ou\,\,\left\{ \begin{array}{l}
x = -1 + y\\
3y = 6
\end{array} \right.\,\,ou\,\,\left\{ \begin{array}{l}
x = 5 + y\\
3y = -6
\end{array} \right.\,\,ou\,\,\left\{ \begin{array}{l}
x = -5 + y\\
3y = 6
\end{array} \right.\\
\Leftrightarrow &\left\{ \begin{array}{l}
x = -1\\
y = -2
\end{array} \right.\,\,ou\,\,\left\{ \begin{array}{l}
x = 1\\
y = 2
\end{array} \right.\,\,ou\,\,\left\{ \begin{array}{l}
x = 3\\
y = -2
\end{array} \right.\,\,ou\,\,\left\{ \begin{array}{l}
x = -3\\
y = 2
\end{array} \right.
\end{aligned}\]Finalement : $$B=\big\{(-1,-2),(1,2),(3,-2),(-3,2)\big\}$$ $\textbf{3.}\,\,\,$ Si $x\in C$, alors $x\in\mathbb{Z}$ tel que : $\left| {\dfrac{{\left| {3x} \right| -4}}{2}} \right| < 1$, alors :
\[\begin{aligned}
&\Leftrightarrow -1 < \frac{{\left| {3x} \right| -4}}{2} < 1\\
&\Leftrightarrow -2 < \left| {3x} \right| -4 < 2\\
&\Leftrightarrow 2 < \left| {3x} \right| < 6\\
&\Leftrightarrow \,\left| {3x} \right| < 6\,\,\text{ et }\,\,2 < \left| {3x} \right|\\
&\Leftrightarrow -6 < 3x < 6\,\,\text{ et }\,\,\left( {2 < 3x\,\,\text{ ou }\,\,3x < – 2} \right)\\
&\Leftrightarrow -2 < x < 2\,\,\text{ et }\,\,\left( {\frac{2}{3} < x\,\,\text{ ou }\,\,x < -\frac{2}{3}} \right)\\
&\Leftrightarrow x \in \left( {\left] { -2;2} \right[ \cap \left( {\left] { -\infty ; -\frac{2}{3}} \right[ \cup \left] {\frac{2}{3}; + \infty } \right[} \right)} \right)\\
&\Leftrightarrow x \in \left( {\left] { -2;2} \right[ \cap \left( {\left] { -\infty ; -\frac{2}{3}} \right[ \cup \left] {\frac{2}{3}; + \infty } \right[} \right)} \right)\\
&\Leftrightarrow x \in \left( {\left] { -2; -\frac{2}{3}} \right[ \cup \left] {\frac{2}{3};2} \right[} \right)\\
&\Leftrightarrow x \in \left\{ { – 1,1} \right\}
\end{aligned}\]Finalement : $$C=\left\{ { – 1,1} \right\}$$